题目内容
【题目】如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD
(1)求证:AC是⊙O的切线;
(2)若⊙O的半径为2,求△ABC的面积.
【答案】
(1)解:连接OC.
∵AC=BC,AD=CD,OB=OC,
∴∠A=∠B=∠1=∠2.
∵∠ACO=∠DCO+∠2,
∴∠ACO=∠DCO+∠1=∠BCD,
又∵BD是直径,
∴∠BCD=90°,
∴∠ACO=90°,
又C在⊙O上,
∴AC是⊙O的切线
(2)解:由题意可得△DCO是等腰三角形,
∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,
∴∠CDO=∠DOC,即△DCO是等边三角形.
∴∠A=∠B=∠1=∠2=30°,CD=AD=2,
在直角△BCD中,BC= = =2 .
又AC=BC,
∴AC=2 .
作CE⊥AB于点E.
在直角△BEC中,∠B=30°,
∴CE= BC= ,
∴S△ABC= ABCE= ×6× =3 .
【解析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得∠ACO=90°,据此即可证得;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目