题目内容
【题目】数学兴趣小组开展了一次课外活动,过程如下:
如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图①的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并证明.
(3)如图③,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△ DEQ的面积.
【答案】(1)证明见解析;(2)PE=QE,证明见解析;(3)
【解析】分析:(1)用ASA证明△ADP≌△CDQ;(2)用SAS证明△DEP≌△DEQ;(3)设QE=PE=x,则BE=14-x,在Rt△BPE中,由勾股定理求QE,得S△DEQ,又△DEP≌△DEQ,则可求解.
详解:(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.
在△ADP与△CDQ中,∠DAP=∠DCQ=90°,AD=CD,∠ADP=∠CDQ,
∴△ADP≌△CDQ(ASA),∴AP=CQ.
(2)PE=QE.
证明:由(1)可知△ADP≌△CDQ,∴DP=DQ.
∵DE平分∠PDQ,∴∠PDE=∠QDE.
在△DEP与△DEQ中,DP=DQ,∠PDE=∠QDE,DE=DE.
∴△DEP≌△DEQ(SAS)∴PE=QE.
(3)解:∵AB:AP=3:4,AB=6,∴AP=8,BP=2.
与(1)同理,可以证明△ADP≌△CDQ,∴CQ=AP=8.
与(2)同理,可以证明△DEP≌△DEQ,∴PE=QE.
设QE=PE=x,则BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:
解得:x=,即QE=.
∴S△DEQ=QECD=××6=.
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ=.