题目内容
【题目】在如图所示的网格纸中,建立了平面直角坐标系xOy,点P(1,2),点A(2,5),B(-2,5),C(-2,3).
(1)以点P为对称中心,画出△A′B′C′,使△A′B′C′与△ABC关于点P对称,并写出下列点的坐标:B′________,C′________;
(2)多边形ABCA′B′C′的面积是__________.
【答案】 (4,-1) (4,1) 28
【解析】分析:(1)分别作出各点关于点P的对称点,再顺次连接即可;
(2)利用S多边形ABCA′B′C′=S△ABC+S正方形ACA′C′+S△A′B′C′即可.
详解:(1)B′(4,-1),C′(4,1),
如图所示,
(2)
∴S多边形ABCA′B′C′=S△ABC+S正方形ACA′C′+S△A′B′C′
故答案为:28.
练习册系列答案
相关题目
【题目】某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.
社团名称 | 人数 |
文学社团 | 18 |
科技社团 | a |
书画社团 | 45 |
体育社团 | 72 |
其他 | b |
请解答下列问题:
(1)a= ,b= ;
(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ;
(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.