题目内容
【题目】如图:O是直线AB上一点,∠AOC=50°,OD是∠BOC的角平分线,OE⊥OC于点O.求∠DOE的度数.(请补全下面的解题过程)
解:∵O是直线AB上一点,∠AOC=50°,
∴∠BOC=180°-∠AOC= °.
∵ OD是∠BOC的角平分线,
∴∠COD= ∠BOC .( )
∴∠COD=65°.
∵OE⊥OC于点O,(已知).
∴∠COE= °.( )
∴∠DOE=∠COE-∠COD= ° .
【答案】130,,角平分线的定义,90,垂直的定义,25
【解析】
先求出∠BOC的度数,再根据OD是∠BOC的角平分线得出∠COD的度数,然后根据OE⊥OC,得出∠COE,最后根据∠DOE=∠COE-∠COD得出答案.
解:解:∵O是直线AB上一点,∠AOC=50°,
∴∠BOC=180°-∠AOC= 130 °.
∵ OD是∠BOC的角平分线,
∴∠COD= ∠BOC .( 角平分线的定义)
∴∠COD=65°.
∵OE⊥OC于点O,(已知).
∴∠COE= 90 °.( 垂直的定义)
∴∠DOE=∠COE-∠COD= 25 ° .
【题目】某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
图二是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?