题目内容
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求BC的长.
【答案】(1)∠DBC=30°;(2)BC=8.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.
(2)根据AE=6,AB=AC,得出CD+AD=12,由△CBD的周长为20,代入即可求出答案.
解:(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°
∵AB的垂直平分线MN交AC于点D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC-∠ABD=30°
(2)∵AE=6,
∴AC=AB=2AE=12
∵△CBD的周长为20,
∴BC=20-(CD+BD)=20-(CD+AD)=20-12=8,
∴BC=8.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为160元,200元的A、B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入/元 | |
A种型号/台 | B种型号/台 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B两种型号的电风扇的销售单价是多少?
(2)若该超市准备用不多于5400元的金额再次采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?