题目内容
【题目】如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠FAC=90°-3∠BAF,BF:AC=2:5,EF=2,则AB长为__________.
【答案】
【解析】解:如图,延长CD到H,使DH=DE,作FG∥AB交CD于G.∵AC=BC,AD=BD,∴CD⊥AB.∵DH=DE,CD⊥AB,∴AH=AE,∠HAD=∠EAD,∴∠HAE=2∠BAF.又∵∠FAC=90°-3∠BAF ,∠FAC+∠BAF+∠ACD=90°,∴∠ACD=2∠BAF=∠HAE.∵∠H=∠H,∠ACD=∠HAE,∴△HAE∽△HCA,∴AH:HE=HC:AH,∴AH2=HEHC.
又∵BF:AC=BF:BC=2:5,∴CF:BC=3:5.∵FG∥AB,∴FG:BD=CF:BC=3:5,FG:BD=FG:AD=EF:AE=EG:DE=3:5.又∵EF=2,∴AE=,∴AH=.∵DE:DG=5:8,∴DE=GD=×CD=CD,∴CD=4DE=4DH,∴=2HD(HD+CD)=2HD5HD=10HD2,∴HD=,∴DE=.∵=,∴AD=,∴AB=2AD=.故答案为: .
练习册系列答案
相关题目