题目内容
【题目】在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
【答案】(1)作法正确(2)或
【解析】
(1)根据作法可以推出,又因为,所以四边形是平行四边形,又,所以四边形是菱形,因此作法正确;
(2)作,由面积公式可求出,由菱形的性质可得AD=AB=4,用勾股定理可得,由锐角三角函数得,所以是正三角形.再根据菱形对角线互相垂直的性质,利用勾股定理解得或.
(1)作法正确.理由如下:
∵
∴
∵平分,平分
∴
∴
∴
又∵
∴四边形是平行四边形
∵
∴四边形是菱形.
故作法正确.
(2)存在.
如图,作
∵,
∴ 且
∴由勾股定理得
∴由锐角三角函数得
∴是正三角形
∴
∵ ∴
∴或
练习册系列答案
相关题目
【题目】如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:
朝下数字 | 1 | 2 | 3 | 4 |
出现的次数 | 16 | 20 | 14 | 10 |
(1)求上述试验中“2朝下”的频率;
(2)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于5的概率.