题目内容
有一个二次函数的图象,三位学生分别说出了它的一些特点.
甲:对称轴是直线x=4;
乙:与x轴两交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3;
请写出满足上述全部特点的二次函数解析式:
y=(x﹣3)(x﹣5).
解析试题分析:由对称轴是直线x=4,与x轴两交点的横坐标都是整数,可设与x轴两交点坐标为(3,0),(5,0),又因为以函数与x轴,y轴交点为顶点的三角形面积为3,可得与y轴的交点的坐标为(0,3).利用交点式y=a(x﹣x1)(x﹣x2),求出解析式.
试题解析:此题答案不唯一
∵对称轴是直线x=4,与x轴两交点的横坐标都是整数
可设与x轴两交点坐标为(3,0),(5,0)
又因为以函数与x轴,y轴交点为顶点的三角形面积为3
可得与y轴的交点的坐标为(0,3)
设解析式y=a(x﹣3)(x﹣5)
把点(0,3)代入得a=.
∴解析式y=(x﹣3)(x﹣5).
考点: 待定系数法求二次函数解析式.
练习册系列答案
相关题目