题目内容
【题目】如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.
(1)求证:CD是⊙O的切线.
(2)若CD=6,求BC的长.
(3)若⊙O的半径为4,则四边形ABCD的最大面积为 .
【答案】(1)证明见解析;(2);(3).
【解析】
(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;
(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;
(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形ABCD的面积最大,当OA⊥BD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论.
解:(1)证明:连接、,
四边形为圆内接四边形,
,
,
,又点在上,
是的切线;
(2)由(1)知:又,
,
设为,则为,
在中,,
即,
,
又,
,
;
(3)连接,,
,
,
,
,,,
,
,
,
当四边形的面积最大时,四边形的面积最大,
当时,四边形的面积最大,
四边形的最大面积,
故答案为:.
练习册系列答案
相关题目