题目内容
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为 .
【答案】6
【解析】解:设B点坐标为(a,b), ∵△OAC和△BAD都是等腰直角三角形,
∴OA= AC,AB= AD,OC=AC,AD=BD,
∵OA2﹣AB2=12,
∴2AC2﹣2AD2=12,即AC2﹣AD2=6,
∴(AC+AD)(AC﹣AD)=6,
∴(OC+BD)CD=6,
∴ab=6,
∴k=6.
故答案为:6.
设B点坐标为(a,b),根据等腰直角三角形的性质得OA= AC,AB= AD,OC=AC,AD=BD,则OA2﹣AB2=12变形为AC2﹣AD2=6,利用平方差公式得到(AC+AD)(AC﹣AD)=6,所以(OC+BD)CD=6,则有ab=6,根据反比例函数图象上点的坐标特征易得k=6.
练习册系列答案
相关题目