题目内容
【题目】如图,△ABC内接于⊙O,且AB=AC,D是上一点,AD与BC交于E,AF⊥DB,垂足为F.
(1)求证:∠ADB=∠CDE;
(2)若AF=DC=6,AB=10,求△DBC的面积.
【答案】(1)证明见解析(2)18
【解析】
(1)根据AB=AC,可得出∠ABC=∠BCA,再根据圆内接四边形的性质可得出∠CDE=∠ABC,从而得出答案;
(2)作AM⊥CD于点M,根据题意可得出BF,还可证明△ACM≌△ABF,从而可得出△DBC的面积.
(1)证明:∵AB=AC,
∴∠ABC=∠BCA=∠ADB,
∵四边形ABCD是圆内接四边形,
∴∠CDE=∠ABC,
∴∠ADB=∠CDE;
(2)解:作AM⊥CD于点M,
∵AB=10,AF=6,
∴BF=8,
∵AD平分∠BDM,AM=AF=6,
∴△ACM≌△ABF,
∴CM=BF=8,
∴DF=DM=CM﹣CD=2.
∴BD=BF+DF=10=AB.
∴∠BAD=∠ADB=∠ADM,
∴AB∥CD,
∴S△DBC=S△ADC=CD×AM=18.
练习册系列答案
相关题目
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4