题目内容

【题目】仔细阅读下面例题,解答问题

例题:已知二次三项式x24x+m有一个因式是(x+3),求另一个因式以及m的值.

解:设另一个因式为(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7m=﹣21

∴另一个因式为(x7),m的值为﹣21

问题:

1)若二次三项式x25x+6可分解为(x2)(x+a),则a   

2)若二次三项式2x2+bx5可分解为(2x1)(x+5),则b   

3)仿照以上方法解答下面问题:若二次三项式2x2+3xk有一个因式是(2x5),求另一个因式以及k的值.

【答案】(1)-3;(2)9;(3)另一个因式为(x+4),k的值为12.

【解析】

试题(1)将(x-2)(x+a)展开,根据所给出的二次三项式即可求出a的值;
(2)(2x-1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;
(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=5,k=3n,继而求出nk的值及另一个因式.

试题解析:

(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,

∴a﹣2=﹣5,

解得:a=﹣3;

(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,

∴b=9;

(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,

则2n﹣3=5,k=3n,

解得:n=4,k=12,

故另一个因式为(x+4),k的值为12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网