题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=( )
A. B. C. D. 2
【答案】D
【解析】
设⊙O与AB,AC,BC分别相切于点E,F,G,连接OE,OF,OG,则OE⊥AB.根据勾股定理得AB=10,再根据切线长定理得到AF=AE,CF=CG,从而得到四边形OFCG是正方形,根据正方形的性质得到设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,建立方程求出x值,进而求出AE与DE的值,最后根据三角形函数的定义即可求出最后结果.
设⊙O与AB,AC,BC分别相切于点E,F,G,连接OE,OF,OG,则
∠OGC=∠OFC=∠OED=90°,
∵∠C=90°,AC=6 BC=8,
∴AB=10
∵⊙O为△ABC的内切圆,
∴AF=AE,CF=CG (切线长相等)
∵∠C=90°,
∴四边形OFCG是矩形,
∵OG=OF,
∴四边形OFCG是正方形,
设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,
∴6﹣x+8﹣x=10,
∴OF=2,
∴AE=4,
∵点D是斜边AB的中点,
∴AD=5,
∴DE=AD﹣AE=1,
∴tan∠ODA==2.
故选:D.
练习册系列答案
相关题目