题目内容
【题目】阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法,
解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③,把方程①代入③得:2×3+y=5,y=﹣1,把y=﹣1代入①得x=4,所以,方程组的解为.
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组.
(2)已知x,y满足方程组,求x2+4y2﹣xy的值.
【答案】(1);(2)15.
【解析】
(1)由②得出3(2x﹣3y)﹣2y=9③,把①代入③得出15﹣2y=9,求出y,把y=3代入①求出x即可;
(2)由①求出x2+4y2=③,把③代入②求出xy=2,①﹣②得出x2﹣3xy+4y2=11,即可求出答案.
解:(1)
由②得:3(2x﹣3y)﹣2y=9③,
把①代入③得:15﹣2y=9,
解得:y=3,
把y=3代入①得:2x﹣9=5,
解得:x=7,
所以原方程组的解为;
(2)
由①得:3(x2+4y2)﹣2xy=47,
x2+4y2=③,
把③代入②得:2×+xy=36,
解得:xy=2,
①﹣②得:x2﹣3xy+4y2=11,
∴x2+4y2=11+3×2=17,
∴x2+4y2﹣xy=17﹣2=15.
练习册系列答案
相关题目