题目内容
【题目】直线分别与x轴、y轴相交与点M、N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交与点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是( )
A.B.C.D.1
【答案】A
【解析】
试题解析:在△MOC和△NOA中,
,
∴△MOC≌△NOA,
∴∠CMO=∠ANO,
∵∠CMO+∠MCO=90°,∠MCO=∠NCP,
∴∠NCP+∠CNP=90°,
∴∠MPN=90°
∴MP⊥NP,
在正方形旋转的过程中,同理可证,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,
∴P在以MN为直径的圆上,
∵M(-4,0),N(0,4),
∴圆心G为(-2,2),半径为2,
∵PG-GC≤PC,
∴当圆心G,点P,C(0,2)三点共线时,PC最小,
∵GN=GM,CN=CO=2,
∴GC= OM=2,
这个最小值为GP-GC=2-2.
故选A.
练习册系列答案
相关题目
【题目】某班数学兴趣小组经过市场调查,整理出某种商品在第天的售价与销量的相关信息如下表:
观察表格:根据表格解答下列问题:
0 | 1 | 2 | |
1 | |||
-3 | -3 |
(1)__________._____________.___________.
(2)在下图的直角坐标系中画出函数的图象,并根据图象,直接写出当取什么实数时,不等式成立;
(3)该图象与轴两交点从左到右依次分别为、,与轴交点为,求过这三个点的外接圆的半径.