题目内容

【题目】从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为 .

【答案】

【解析】解:所得函数的图象经过第一、三象限,∴5﹣m2>0,∴m2<5,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,△=﹣4<0,无实数根;

m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有实数根;

m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,△=4+4=8>0,有实数根.

故方程有实数根的概率为.故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网