题目内容
【题目】如图,在钝角△ABC中,∠C=45°,AE⊥BC,垂足为E点,且AB与AC的长度为方程x2﹣9x+18=0的两个根,⊙O是△ABC的外接圆.
求:(1)⊙O的半径;
(2)BE的长.
【答案】(1)OB =3;(2)BE=.
【解析】
(1)连接OB,解方程求出AC、AB,根据勾股定理求出半径;
(2)根据题意得到△AEC为等腰直角三角形,根据勾股定理计算即可.
解:(1)连接OB,
解方程x2﹣9x+18=0,
得,x1=3,x2=6,
由图形可知,AC=3,AB=6,
由圆周角定理得,∠AOB=2∠C=90°,
∴△AOB为等腰直角三角形,
∴OB=AB=3;
(2)∵∠C=45°,AE⊥BC,
∴△AEC为等腰直角三角形,
∴AE=AC=,
∴BE==.
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.
【题目】为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如下表:
成本单价 (单位:元) | 投放数量(单位:辆) | 总价(单位:元) | |
A型 | 50 | 50 | |
B型 | 50 |
| |
成本合计(单位:元) | 7500 |
(1)根据表格填空:
本次试点投放的A、B型“小黄车”共有 辆;用含有的式子表示出B型自行车的成本总价为 ;
(2)试求A、B两种款型自行车的单价各是多少元?
(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.