题目内容

【题目】如图,ABC中,∠A=50°BDCE是∠ABC,∠ACB的平分线,则∠BOC的度数为(  )

A.105°B.115°C.125°D.135°

【答案】B

【解析】

根据∠A=50°,可求出∠ABC+ACB的度数,再根据角平分线的定义得出∠OBC=ABC,∠OCB=ACB,求出∠OBC+OCB的度数,根据三角形内角和定理求出即可.

∵∠A=50°,

∴∠ABC+ACB=180°A=130°,

BOCO分别是△ABC中∠ABC、∠ACB的角平分线,

∴∠OBC=ABC,∠OCB=ACB

∴∠OBC+OCB=(ABC+ACB)=65°,

∴∠BOC=180°(OBC+OCB)=180°65°=115°.

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网