题目内容
【题目】已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.
(1)如图1,求证:四边形ADCF是平行四边形;
(2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.
【答案】(1)证明见解析;(2)△AEF、 △ABE、 △ACE 、△CDE.
【解析】
(1)证明△AEF≌△DEB,可得AF=DB,再根据 BD=CD可得AF=CD,再由AF//CD,根据有一组对边平行且相等的四边形是平行四边形即可证得结论;
(2)根据三角形中线将三角形分成面积相等的两个三角形以及全等三角形的面积相等即可得.
(1)D为BC的点、E为AD的中点
BD=CD、AE=DE
AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中
,
∴△AEF≌△DEB,
∴AF=DB,
又∵ BD=CD
∴AF=CD,
又AF∥BC,
∴四边形ADCF是平行四边形;
(2)∵△AEF≌△DEB,
∴S△AEF=S△DEB,
∵D为BC中点,
∴S△CDE=S△DEB,
∵E为AD中点,
∴S△ABE=S△DEB,S△ACE= S△CDE=S△DEB,
综上,与△BDE面积相等的三角形有△AEF、 △ABE、 △ACE 、△CDE.
【题目】某市居民用水实行阶梯水价,实施细则如下表:
分档水量 | 年用水量 (立方米) | 水价 (元/立方米) |
第一阶梯 | 0~180(含) | 5.00 |
第二阶梯 | 181~260(含) | 7.00 |
第三阶梯 | 260以上 | 9.00 |
例如,某户家庭年使用自来水200 m3,应缴纳:180×5+(200-180)×7=1040元;
某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.
(1)小刚家2017年共使用自来水170 m3,应缴纳 元;小刚家2018年共使用自来水260 m3,应缴纳 元.
(2)小强家2018年使用自来水共缴纳1180元,他家2018年共使用了多少自来水?