题目内容
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的△ABC,请你根据所学的知识回答下列问题:
(1)求△ABC的面积;(2)判断△ABC的形状,并说明理由.
【答案】(1)△ABC 的面积为5;(2)△ABC是直角三角形,见解析.
【解析】
(1)三角形ABC面积由长方形面积减去三个直角三角形面积,求出即可;
(2)利用勾股定理表示出AB2=5,BC2=25,AC2=20,再利用勾股定理的逆定理得到三角形为直角三角形.
(1 )S△ABC =4 ×4-×1×2 -×4 ×3- ×2×4 =16-1-6-4=5;
(2)△ABC是直角三角形,理由:
∵正方形小方格边长为1
∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,
∴AB2+ AC2= BC2,
∴△ABC是直角三角形.
练习册系列答案
相关题目
【题目】市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够, 导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.
请回答下列问题:
时间 | 第一天7:00﹣8:00 | 第二天7:00﹣8:00 | 第三天7:00﹣8:00 | 第四天7:00﹣8:00 | 第五天7:00﹣8:00 |
需要租用自行车却未租到车的人数(人) | 1500 | 1200 | 1300 | 1300 | 1200 |
(1)表格中的五个数据(人数)的中位数是多少?
(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?