题目内容
【题目】如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.
(1)(特殊发现)如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.
(2)(类比探究)如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.
(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).
【答案】(1)∠BOD=60°,∠COE=30°;(2)∠COE:∠BOD=;(3)画图见解析;∠POE=30°.
【解析】
(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;
(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;
(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论.
(1)∵OC边与OA边重合,如图1,
∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,
∵OE平分∠AOD,
∴∠COE=AOD=30°;
(2)①0°≤∠AOC<60°时,如图2,
∵OE平分∠AOD,
∴∠DOE=AOD,
∴∠COE=∠COD﹣∠EOD=60°﹣AOD,
∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,
∴∠COE:∠BOD=;
②当60°≤∠AOC≤120°时,如图3,
∵OE平分∠AOD,
∴∠DOE=AOD,
∴∠COE=∠EOD﹣∠COD=AOD﹣60°,
∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,
∴∠COE:∠BOD=;
(3)①0°≤∠AOC<60°时,
设∠AOC=α,∠BOD=β,
∵∠AOB=120°,∠COD=60°,
∴α+β=60°,
∴∠AOD=60°+α,∠BOC=60°+β,
∵OE始终平分∠AOD,OP平分∠COB,
∴∠AOE=AOD=30°+ ,∠BOP=BOC=30°+,
∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+)﹣(30°+)=30°;
②当60°≤∠AOC≤120°时,
设∠AOC=α,∠BOD=β,
∵∠AOB=120°,∠COD=60°,
∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,
∴120°﹣α=60°﹣β,
∴α﹣β=60°,
∴∠AOD=120°+β,∠BOC=60°﹣β,
∵OE始终平分∠AOD,OP平分∠COB,
∴∠DOE=AOD=60°+,∠BOP=BOC=30°﹣,
∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+)﹣β﹣(30°﹣)=30°;
综上所述,∠POE=30°.
【题目】新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前4天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负。文具店记录了这四天该钢笔的售价情况和售出情况,如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
每支价格相对标准价格(元) | +1 | 0 | -1 | -2 |
售出支数(支) | 12 | 15 | 32 | 33 |
(1)填空:这四天中赚钱最多的是第______天,这天赚了______元钱;
(2)求新华文具用品店这四天出售这种钢笔一共赚了多少钱;
(3)新华文具用品店准备用这四天赚的钱全部购进这种钢笔,进价仍为每支6元为了促销这种钢笔,每只钢笔的售价在10元的基础上打九折,本次购进的这种钢笔全部售出后共赚了多少钱?
【题目】甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
平均数 | 方差 | 中位数 | 命中9环以上的次数(包括9环) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 7.5 |
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)