题目内容
【题目】如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
【答案】(1)证明见解析;(2)AB:AE=:1.
【解析】(1)证明∵四边形ABCD是平行四边形(已知),
∴BC∥AD(平行四边形的对边相互平行)。
又∵AM丄BC(已知),∴AM⊥AD。
∵CN丄AD(已知),∴AM∥CN。∴AE∥CF。
又由平行得∠ADE=∠CBD,又AD=BC(平行四边形的对边相等)。
在△ADE和△CBF中, ∠DAE=∠BCF="90" ,AD=CB,∠ADE=∠FBC,
∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等)。
∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形)。
(2)如图,连接AC交BF于点0,当AECF为菱形时,则AC与EF互相垂直平分。
∵BO=OD(平行四边形的对角线相互平分),
∴AC与BD互相垂直平分。
∴ABCD是菱形(对角线相互垂直平分的平行四边形是菱形)。
∴AB=BC(菱形的邻边相等)。
∵M是BC的中点,AM丄BC(已知),∴△ABM≌△CAM。
∴AB=AC(全等三角形的对应边相等)。∴△ABC为等边三角形。
∴∠ABC=60°,∠CBD=30°。
在Rt△BCF中,CF:BC=tan∠CBF=。
又∵AE=CF,AB=BC,∴AB:AE=。
(1)根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE∥CF;然后由ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,根据对边平行且相等的四边形是平行四边形的判定得出结论。
(2)如图,连接AC交BF于点0.由菱形的判定定理推知平行四边形ABCD是菱形,根据菱形的邻边相等知AB=BC;然后结合已知条件“M是BC的中点,AM丄BC”证得△ADE≌△CBF(ASA),所以AE=CF(全等三角形的对应边相等),从而证得△ABC是正三角形;最后在Rt△BCF中,利用锐角三角函数的定义求得CF:BC=tan∠CBF=,利用等量代换知(AE=CF,AB=BC)AB:AE=。
【题目】目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | ||
乙型 |
(1)如何进货,进货款恰好为元?
(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;
(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?