题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=10,求AE的长;
(3)若△CDE的面积是△OBF面积的,求的值.
【答案】(1)见解析;(2)8;(3)
【解析】
(1)连接AD.根据直径所对的圆周角是直角、等腰三角形的性质以及平行线的性质即可证明;
(2)设AE=x.根据圆周角定理的推论和勾股定理进行求解;
(3)设S△CDE=5k,S△OBF=6k,求得S△CDE=S△BDE=5k,根据相似三角形的性质得到,求得S△ABE=4S△OBF,于是得到S△CAB=S△CDE+S△BDE+S△ABE=34k,再由相似三角形的性质即可得到结论.
(1)连接AD,
∵AB是⊙O直径,
∴∠AEB=∠ADB=90°,
∵AB=AC,
∴,
∴OD⊥BE;
(2)∵∠AEB=90°,
∴∠BEC=90°,
∵BD=CD,
∴BC=2DE=,
∵四边形ABDE内接于⊙O,
∴∠BAC+∠BDE=180°,
∵∠CDE+∠BDE=180°,
∴∠CDE=∠BAC,
∵∠C=∠C,
∴△CDE∽△CAB,
∴,即,
∴CE=2,
∴AE=AC﹣CE=AB﹣CE=8;
(3)∵,
∴设S△CDE=5k,S△OBF=6k,
∵BD=CD,
∴S△CDE=S△BDE=5k,
∵BD=CD,AO=BO,
∴OD∥AC,
∵△OBF∽△ABE,
∴,
∴S△ABE=4S△OBF,
∴S△ABE=4S△OBF=24k,
∴S△CAB=S△CDE+S△BDE+S△ABE=34k,
∵△CDE∽△CAB,
∴,
∴,
∵BC=2CD,
∴.
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论错误的是( )
A.ac<0
B.当x>1时,y的值随x的增大而减小
C.3是方程ax2+(b﹣1)x+c=0的一个根
D.当﹣1<x<3时,ax2+(b﹣1)x+c>0