题目内容

如图,直角梯形ABCD中,∠DAB=90°,ABCD,AB=AD,∠ABC=60度.以AD为边在直角梯形
精英家教网
ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
(1)证明:∵△ADF为等边三角形,
∴AF=AD,∠FAD=60°(1分)
∵∠DAB=90°,∠EAD=15°,AD=AB(2分)
∴∠FAE=∠BAE=75°,AB=AF,(3分)
∵AE为公共边
∴△FAE≌△BAE(4分)
∴EF=EB(5分)

(2)如图,连接EC.(6分)
∵在等边三角形△ADF中,
∴FD=FA,
精英家教网

∵∠EAD=∠EDA=15°,
∴ED=EA,
∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°.(7分)
由(1)△FAE≌△BAE知∠EBA=∠EFA=30°.
∵∠FAE=∠BAE=75°,
∴∠BEA=∠BAE=∠FEA=75°,
∴BE=BA=6.
∵∠FEA+∠BEA+∠GEB=180°,
∴∠GEB=30°,
∵∠ABC=60°,
∴∠GBE=30°
∴GE=GB.(8分)
∵点G是BC的中点,
∴EG=CG
∵∠CGE=∠GEB+∠GBE=60°,
∴△CEG为等边三角形,
∴∠CEG=60°,
∴∠CEB=∠CEG+∠GEB=90°(9分)
∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2
∴CE=2
3

∴BC=4
3
(10分);

解法二:过C作CQ⊥AB于Q,
∵CQ=AB=AD=6,
∵∠ABC=60°,
∴BC=6÷
3
2
=4
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网