题目内容
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.
分析:(1)根据平行线的性质和三角形的内角和定理推出∠BEC=∠ADE,根据AAS证出△EAD≌△EBC即可;
(2)延长AF交BC的延长线于M,证△ADF≌△MFC,推出AF=FM,根据等腰三角形性质推出AF⊥BF,根据直角三角形斜边上中线性质推出AF=BF即可.
(2)延长AF交BC的延长线于M,证△ADF≌△MFC,推出AF=FM,根据等腰三角形性质推出AF⊥BF,根据直角三角形斜边上中线性质推出AF=BF即可.
解答:(1)证明:∵AD∥BC,
∴∠BAD+∠ABC=180°,
∵∠ABC=90°,
∴∠BAD=∠ABC=90°,
∵DE⊥EC,
∴∠AED+∠BEC=90°
∵∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠DAE=∠EBC,AE=BC,
∴△EAD≌△EBC,
∴AD=BE.
(2)答:△ABF是等腰直角三角形.
理由是:延长AF交BC的延长线于M,
∵AD∥BM,
∴∠DAF=∠M,
∵∠AFD=∠CFM,DF=FC,
∴△ADF≌△MFC,
∴AD=CM,
∵AD=BE,
∴BE=CM,
∵AE=BC,
∴AB=BM,
∴△ABM是等腰直角三角形,
∵△ADF≌△MCF,
∴AF=FM,
∴∠ABC=90°,
∴BF⊥AM,BF=
AM=AF,
∴△AFB是等腰直角三角形.
∴∠BAD+∠ABC=180°,
∵∠ABC=90°,
∴∠BAD=∠ABC=90°,
∵DE⊥EC,
∴∠AED+∠BEC=90°
∵∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠DAE=∠EBC,AE=BC,
∴△EAD≌△EBC,
∴AD=BE.
(2)答:△ABF是等腰直角三角形.
理由是:延长AF交BC的延长线于M,
∵AD∥BM,
∴∠DAF=∠M,
∵∠AFD=∠CFM,DF=FC,
∴△ADF≌△MFC,
∴AD=CM,
∵AD=BE,
∴BE=CM,
∵AE=BC,
∴AB=BM,
∴△ABM是等腰直角三角形,
∵△ADF≌△MCF,
∴AF=FM,
∴∠ABC=90°,
∴BF⊥AM,BF=
1 |
2 |
∴△AFB是等腰直角三角形.
点评:本题主要考查对直角梯形,直角三角形斜边上的中线,等腰直角三角形,等腰三角形的性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关题目