题目内容
【题目】如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=_____°.
【答案】105°
【解析】
由菱形及菱形一个内角为120°,可得△ABC与△ACD为等边三角形.CE⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC可求出∠E的度数,根据三角形内角和即可得∠EFC的度数.
解:∵菱形ABCD中,∠BAD=120°
∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD= ∠BCD=60°,
∴△ACD是等边三角形
∵CE⊥AD
∴∠ACE=∠ACD=30°
∴∠BCE=∠ACB+∠ACE=90°
∵CE=BC
∴∠E=∠CBE=45°
∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°
故答案为:105°
练习册系列答案
相关题目