题目内容
【题目】如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是_____(填序号)
【答案】①②
【解析】
由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
如图,设BE,DG交于O,
∵四边形ABCD和EFGC都为正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,
在△BCE和△DCG中,,
∴△BCE≌△DCG(SAS),
∴∠1=∠2,BE=DG,故①正确,
∵∠3=∠4,∠BCD=90°,
∴∠1+∠4=∠3+∠2=90°,
∴∠BOD=90°,
∴BE⊥DG;故②正确;
如图,连接BD,EG,
∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,
∴BG2+DE2=OG2+BO2+EO2+ DO2=2a2+2b2,故③错误.
故答案为:①②.
练习册系列答案
相关题目