题目内容
【题目】如图,正方形ABCD的边长为1.对角线AC、BD相交于点O,P是BC延长线上的一点,AP交BD于点E,交CD于点H,OP交CD于点F,且EF与AC平行.
(1)求证:EF⊥BD.
(2)求证:四边形ACPD为平行四边形.
(3)求OF的长度.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)根据正方形的性质求出AC⊥BD,即可得出答案;
(2)根据平行线得出=,求出AC∥DP,根据平行四边形的判定推出即可;
(3)求出OE和EF的长,再根据勾股定理求出即可.
(1)证明:∵四边形ABCD是正方形,
∴AC⊥BD,
∵EF∥AC,
∴EF⊥BD;
(2)证明:
∵EF∥AC,
∴=,=,
∵四边形ABCD是正方形,
∴AD∥CP,OA=OC,
∴=,
即=,
∴AO∥DP,
∵AD∥CP,
∴四边形ACPD为平行四边形;
(3)解:由勾股定理得:AC=BD==,
∵四边形ACPD为平行四边形,
∴CP=AD=BC,
∴=,
∵AD∥BP,
∴==,
∴DE=BD=,OE=OD﹣DE=﹣=,
∵DO=BD=,
∵∠DEF=∠DOC=90°﹣∠EDF=45°,
∴∠DFE=45°,
∴EF=DE=,
在Rt△OEF中,由勾股定理得:OF===.
【题目】2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:
队员1 | 队员1 | 队员1 | 队员1 | 队员1 | 队员1 | |
甲组 | 176 | 177 | 175 | 176 | 177 | 175 |
乙组 | 178 | 175 | 170 | 174 | 183 | 176 |
设两队队员身高的平均数依次为,,方差依次为,,下列关系中正确的是( )
A.,B.,
C.,D.,
【题目】某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x<180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品迸行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:
a.甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x<170,170≤x<175,
175≤x<180,180≤x<185,185≤x<190,190≤x≤195):
b.甲车间生产的产品尺寸在175≤x<180这一组的是:
175 176 176 177 177 178 178 179 179
c.甲、乙两车间生产产品尺寸的平均数、中位数、众数如下:
车间 | 平均数 | 中位数 | 众数 |
甲车间 | 178 | m | 183 |
乙车间 | 177 | 182 | 184 |
根据以上信息,回答下列问题:
(1)表中m的值为 ;
(2)此次检测中,甲、乙两车间生产的产品合格率更高的是 (填“甲”或“乙”),理由是 ;
(3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有 个.