题目内容
【题目】某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.
(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?
(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?
【答案】(1)50元;(2)该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.
【解析】
(1)设该商品的售价是每个元,根据利润=每个的利润×销售量,即可列出关于x的方程,解方程即可求出结果;
(2)设该商品的售价为每个元,利润为y元,根据利润=每个的利润×销售量即可得出y关于x的函数关系式,然后利用二次函数的性质解答即可.
解:(1)设该商品的售价是每个元,
根据题意,得:,
解之得:,(不合题意,舍去).
答:为了尽快售出,这种商品的售价应定为每个50元;
(2)设该商品的售价为每个元,利润为y元,则
,
∴当时,利润最大,最大利润是12250元.
答:该商品的售价为每个65元时,商场销售该商品的平均月利润最大,最大利润是12250元.
练习册系列答案
相关题目