题目内容
【题目】如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2 = OB·OE.
(1)求证:四边形AFCD是平行四边形;
(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)由题意,得到,然后由AD∥BC,得到,则,即可得到AF//CD,即可得到结论;
(2)先证明∠AED=∠BCD,得到∠AEB=∠ADC,然后证明得到,即可得到△ABE∽△ADC.
证明:(1)∵OD2 =OE · OB,
∴.
∵AD//BC,
∴.
∴.
∴ AF//CD.
∴四边形AFCD是平行四边形.
(2)∵AF//CD,
∴∠AED=∠BDC,.
∵BC=BD,
∴BE=BF,∠BDC=∠BCD
∴∠AED=∠BCD.
∵∠AEB=180°∠AED,∠ADC=180°∠BCD,
∴∠AEB=∠ADC.
∵AE·AF=AD·BF,
∴.
∵四边形AFCD是平行四边形,
∴AF=CD.
∴.
∴△ABE∽△ADC.
练习册系列答案
相关题目