题目内容

【题目】如图,过抛物线y= x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.

(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

【答案】
(1)

解:由题意A(﹣2,5),对称轴x=﹣ =4,

∵A、B关于对称轴对称,

∴B(10,5).


(2)

解:①如图1中,

由题意点D在以O为圆心OC为半径的圆上,

∴当O、D、B共线时,BD的最小值=OB﹣OD= ﹣5=5 ﹣5.

②如图中,

当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,

∴DE= = =3,

∴点D的坐标为(4,3).

设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22

∴x=

∴P( ,5),

∴直线PD的解析式为y=﹣ x+


【解析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE= = =3,求出P、D的坐标即可解决问题;
【考点精析】通过灵活运用抛物线与坐标轴的交点,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网