题目内容

【题目】已知抛物线y=x2-2x-3与x轴相交于A、B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=-x+n与此图象有且只有两个公共点时,则n的取值范围为

【答案】n> 或-1<n<3
【解析】解:当y=0时,y=x2-2x-3=0,(x-3)(x+1)=0,
x=-1或3,
∴A(-1,0),B(3,0),
y=x2-2x-3=(x-1)2-4,
∴M(1,-4),
如图,作直线y=-x,
分别过A、B作直线y=-x的平行线,

当直线y=-x+n经过A(-1,0)时,1+n=0,n=-1,
当直线y=-x+n经过B(3,0)时,-3+n=0,n=3,
∴n的取值范围为:-1<n<3,
根据题意得:翻折后的顶点坐标为(1,4),
∴翻折后的抛物线的解析式为:y=-(x-1)2+4=-x2+2x+3,
当直线y=-x+n与抛物线y=-x2+2x+3只有一个公共点时,

-x2+2x+3=-x+n,
-x2+3x+3-n=0,
△=9+4(3-n)=0,
n=
综上所述:当直线y=-x+n与此图象有且只有两个公共点时,则n的取值范围为n> 或-1<n<3.
【考点精析】掌握二次函数图象的平移和抛物线与坐标轴的交点是解答本题的根本,需要知道平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网