题目内容
【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形,依此方式,绕点O连续旋转2018次得到正方形,如果点A的坐标为(1,0),那么点的坐标是______.
【答案】(-1,1)
【解析】
根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.
解:∵四边形OABC是正方形,且OA=1,
∴B(1,1),
连接OB,
由勾股定理得:OB=,
由旋转得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(-1,1),B3(,0),…,
发现是8次一循环,所以2018÷8=252…余2,
∴点B2018的坐标为:(-1,1)
故答案为:(-1,1).
练习册系列答案
相关题目