题目内容
【题目】已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.
(1)如图1,
①求证:点B,C,D在以点A为圆心,AB为半径的圆上.
②直接写出∠BDC的度数(用含α的式子表示)为______.
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD.
(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.
【答案】(1)①证明见解析;②;(2)证明见解析;(3)tan∠FBC=.
【解析】
(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A为圆心,AB为半径的圆上;
②由圆周角定理可得∠BAC=2∠BDC,可求∠BDC的度数;
(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;
(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F三点共线时,BF最长,根据等腰三角形的性质和勾股定理可求,OH=HC,BH=3HC,即可求tan∠FBC的值.
证明:(1)①如图1,连接DA,
∵点C关于直线l的对称点为点D,
∴AD=AC,且AB=AC,
∴AD=AB=AC,
∴点B,C,D在以点A为圆心,AB为半径的圆上;
②∵点B,C,D在以点A为圆心,AB为半径的圆上,
∴∠BDC=;
(2)如图2,连接CE,
∵∠BAC=60°,AB=AC,
∴△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∵∠BDC=,
∴∠BDC=30°,
∵BD⊥DE,
∴∠CDE=60°,
∵点C关于直线l的对称点为点D,
∴DE=CE,且∠CDE=60°,
∴△CDE是等边三角形,
∴CD=CE=DE,∠DCE=60°=∠ACB,
∴∠BCD=∠ACE,且AC=BC,CD=CE,
∴△BCD≌△ACE(SAS),
∴BD=AE;
(3)如图3,取AC的中点O,连接OB,OF,BF,
∵在△BOF中,BO+OF≥BC,
∴当点O,点B,点F三点共线时,BF最长,
如图,过点O作OH⊥BC,
∵∠BAC=90°,AB=AC,
∴BC=AC,∠ACB=45°,
∴∠COH=∠HCO=45°,
∴OH=HC,
∴OC=HC,
∵点O是AC中点,
∴AC=2HC,
∴BC=4HC,
∴BH=BC﹣HC=3HC,
∴tan∠FBC==.