题目内容
【题目】如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.
(1)甲的速度为m/min,乙的速度为m/min;
(2)在图②中画出y2与x的函数图象;
(3)求甲乙两人相遇的时间;
(4)在上述过程中,甲乙两人相距的最远距离为m.
【答案】
(1)80;200
(2)解:600÷200=3(min),
600×2÷200=6(min).
2400÷200+6=18(min).
∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).
画出图形如图所示.
(3)解:设甲乙两人相遇的时间为xmin,
依题意得:80x=200(x﹣6),
解得:x=10.
答:甲乙两人相遇的时间为10min
(4)960
【解析】解:(1)甲的速度为:2400÷30=80(m/min);
乙的速度为:80×2.5=200(m/min).
所以答案是:80;200.(4)∵乙的速度>甲的速度,
∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,
3×(80+200)=840(m);
当x=18时,甲乙两人间距为:
2400﹣80×18=960(m).
∵960>840,
∴甲乙两人相距的最远距离为960m.
所以答案是:960.
【题目】如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).
投篮次数(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次数(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中频率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)求全班学生人数和m的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |