题目内容
【题目】如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,点D在直线BC上,E在AC上,且AC=CD,DE=AB.
(1)如图②,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;
(2)如图③,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.
【答案】(1)平移距离为2﹣;(2)30°.
【解析】
(1)证明Rt△ACB≌Rt△DCE(HL),得出BC=CE,再利用含30度角的直角三角形的性质得出BE1=2BC1,结合勾股定理求出BC1即可得出结论;
(2)△ECD绕点C旋转的度数即∠ECE2的度数,易得:∠ECE2=∠BAC=30°,则答案可求出.
(1)解:∵∠ACB=90°
∴∠ECD=90°,
∵AC=CD,DE=AB.
∴Rt△ACB≌Rt△DCE(HL),
∴BC=CE,
∵∠A=30°,AB=4,
∴BC=AB=2,
∴CE=2,
由平移知,C1E1∥AC,C1E1=CE=2,
∴∠BE1C1=∠A=30°,
∴BE1=2BC1,
∴BE12﹣BC12=C1E12,
即:4BC12﹣BC12=4,
∴BC1=,
∴CC1=BC﹣BC1=2﹣;
即平移距离为2﹣,
故答案为:2﹣.
(2)解:旋转角∠DCD2的度数是△ECD绕点C旋转的度数,即∠ECE2的度数;
∵∠ABC=60°,BC=CE2=2,AB=4,
∴△E2BC是等边三角形,
∴BC=E2C=E2B=2,
∴AE2=E2C=2,
∴∠E2AC=∠E2CA,
∴∠ECE2=∠BAC=30°,
∴∠DCD2=∠ECE2=30°,
故答案为:30°.
练习册系列答案
相关题目