题目内容

【题目】如图,在某海上观测点B处观测到位于北偏东30°方向有一艘救船A,搜救船A最大航速50海里/时,AB52海里,在位于观测点B的正东方向,搜救船A的东南方向有一失事渔船C,由于当天正值东南风,失事渔船C2海里/时的速度向西北方向漂移,若不考虑大风对搜救船A的航线和航速的影响,求失事渔船获救的最快时间.

【答案】失事渔船获救的最快时间为3小时.

【解析】

ADBC于点D,在直角三角形ABD中,根据三角函数求得AD的长;再在直角三角形ACD中,根据三角函数求得AC的长;先求出BC的长,再根据搜救船行驶路程+失事船只漂移路程=AC的长列方程求解可得.

过点AADBC于点D

RtABD中,∵AB52、∠B60°

ADABsinB52

RtADC中,AD78,∠C45°

ACAD156

设失事渔船获救的最快时间为t

根据题意,得:2t+50t156

t3

答:失事渔船获救的最快时间为3小时.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网