题目内容
【题目】分解因式:x3﹣16x= .
【答案】x(x+4)(x﹣4)【解析】解:原式=x(x2﹣16)=x(x+4)(x﹣4), 所以答案是:x(x+4)(x﹣4)
【题目】将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )
A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+6
【题目】既是分数又是正数的是( ).A.+2B.-4C.0D.2.3
【题目】长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.
(1)如果∠DEF=130°,求∠BAF的度数;
(2)判断△ABF和△AGE是否全等吗?请说明理由.
【题目】已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.
【题目】在平面直角坐标系xOy中,抛物线C:y=mx2+4x+1.
(1)当抛物线C经过点A(﹣5,6)时,求抛物线的表达式及顶点坐标;
(2)若抛物线C:y=mx2+4x+1(m>0)与x轴的交点的横坐标都在﹣1和0之间(不包括﹣1和0),结合函数的图象,求m的取值范围;
(3)参考(2)小问思考问题的方法解决以下问题:
关于x的方程x﹣4=在0<x<4范围内有两个解,求a的取值范围.
【题目】某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.
(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是 ;
(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.
【题目】如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P、Q两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与△ABC重叠部分的面积为S.
(1)当点R在线段AC上时,求出t的值.
(2)求出S与t之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)
(3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动,当t为何值时,△LRE是等腰三角形.请直接写出t的值或取值范围.
【题目】解方程组和不等式(1)解方程组 (2)解不等式5x+15>4x+13并在数轴上表示它的解集.