题目内容
【题目】如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.
(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.
【答案】(1)见解析;(2)①E(6,9);②存在,点P的坐标为(-3,0)或(9,0);③不变化,MH+MG=9
【解析】
(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=60°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;
(2)①由点B(0,9),得到OB=9,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得,过E作EF⊥x轴于F,角三角形即可得到结论;
②存在,如图,当时,当CE=PE,根据等腰三角形的性质即可得到结论;③不会变化,连接EM,根据三角形的面积公式即可得到结论.
(1)∵△ODC和△EBC都是等边三角形
∴OC=DC,BC=CE,∠OCD=∠BCE=60°
∴∠BCE+∠BCD=∠OCD+∠BCD
即∠ECD=∠BCO
∴△DEC≌△OBC(SAS)
∴DE=BO
(2)①∵点B(0,9),
∴OB=9,
由(1)知△BCO≌△ECD,
∴∠CDE=∠BOC=90°,
∴DE⊥BC,
∵△EBC是等边三角形,
∴∠DEC=30°,
∴∠OBC=∠DEC=30°,
∴,,
∴,
过E作EF⊥x轴于F,
∵∠DCO=∠BCE=60°,
∴∠ECF=60°,
∵,
∴,,
∵ ,
∴,
∴E(6,9);
②存在,如图,
当时,
∵,
∴,,
∴;
当CE=PE,
∵∠ECP=60°,
∴△CPE是等边三角形,
∴P2,P3重合,
∴当△PEC为等腰三角形时,点P的坐标为(-3,0)或(9,0);
③不会变化,如图,连接EM,
∵
∵BC=CE=BE,
∴GM+MH=DE=9,
∴MH+MG的值不会发生变化.