题目内容
【题目】如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,抛物线y=﹣ (x﹣m)2+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.
(1)n=(用含m的代数式表示),点C的纵坐标是(用含m的代数式表示);
(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数解析式;
(3)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.
【答案】
(1)﹣m+4;﹣ m2﹣m+4
(2)
解:∵四边形ABCD是矩形,
∴DE∥y轴,
∵CD=2,
∴当x=2时,y=2,即DE与AB的交点坐标为(2,2),
∴当点P在矩形BCDE的边DE上时,抛物线的顶点P的坐标为(2,2),
∴抛物线对应的函数解析式为y=﹣ (x﹣2)2+2
(3)
解:如图①②,点C、D在抛物线上时,由CD=2可知对称轴为x=±1,即m=±1;
如图③④,点C、E在抛物线上时,
由B(0,4)和CD=2得E(﹣2,4),
则4=﹣ (﹣2﹣m)2+(﹣m+4),
解得:m1= ,m2= ,
综上所述,m=1或﹣1或 或
【解析】解:(1)∵y=﹣ (x﹣m)2+n=﹣ x2+ mx﹣ m2+n,
∴顶点P(m,n),
∵P在直线y=﹣x+4上,
∴n=﹣m+4,
当x=0时,y=﹣ m2+n=﹣ m2﹣m+4,即点C的纵坐标为﹣ m2﹣m+4,
所以答案是:﹣m+4,﹣ m2﹣m+4;
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).
【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 20 | 30 |
售价(元/件) | 29 | 40 |
(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?