题目内容

【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF结果精确到米)

【答案】
(1)解:作BH⊥AF于H,如图,

在Rt△ABH中,∵sin∠BAH=

∴BH=800sin30°=400,

∴EF=BH=400m


(2)解:在Rt△CBE中,∵sin∠CBE=

∴CE=200sin45°=100 ≈141.4,

∴CF=CE+EF=141.4+400≈541(m).

答:AB段山坡高度为400米,山CF的高度约为541米.


【解析】(1)作BH⊥AF于H,如图,在Rt△ABH中根据正弦的定义可计算出BH的长,从而得到EF的长;(2)先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可.
【考点精析】根据题目的已知条件,利用关于坡度坡角问题的相关知识可以得到问题的答案,需要掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网