题目内容
【题目】△ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和为( )
A.5
B.6
C.4
D.
【答案】D
【解析】作△ABC的高CQ,AH,过C作CZ⊥DE交ED的延长线于Z,
∵AB=AC=5,BC=6,AH⊥BC,
∴BH=CH=3,
根据勾股定理得:AH=4,
根据三角形的面积公式得:BCAH=ABCQ,
即:6×4=5CQ,
解得:CQ= ,
∵CQ⊥AB,DE⊥AB,CZ⊥DE,
∴∠CQE=∠QEZ=∠Z=90°,
∴四边形QEZC是矩形,
∴CQ=ZE,
∵∠QEZ=∠Z=90°,
∴∠QEZ+∠Z=180°,
∴CZ∥AB,
∴∠B=∠ZCB,
∵DF⊥AC,CZ⊥DE,
∴∠Z=∠DFC=90°,
∵AB=AC,
∴∠B=∠ACB,
∴∠ACB=∠ZCB,
∵CD=CD,∠ACB=∠ZCB,
∴△ZCD≌△FCD,
∴DF=DZ,
∴DE+DF=CQ=.
故选D.
【考点精析】本题主要考查了平行线的判定与性质和矩形的性质的相关知识点,需要掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.
【题目】甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:
甲 | 1 | 1 | 0 | 2 | 1 | 3 | 2 | 1 | 1 | 0 |
乙 | 0 | 2 | 2 | 0 | 3 | 1 | 0 | 1 | 3 | 1 |
(1)分别计算两组数据的平均数和方差;
(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?
【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件) | n=50﹣x |
销售单价m(元/件) | 当1≤x≤20时,m=20+ x |
当21≤x≤30时,m=10+ |
(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?