题目内容

【题目】△ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和为(  )
A.5
B.6
C.4
D.

【答案】D
【解析】作△ABC的高CQ,AH,过C作CZ⊥DE交ED的延长线于Z,

∵AB=AC=5,BC=6,AH⊥BC,
∴BH=CH=3,
根据勾股定理得:AH=4,
根据三角形的面积公式得:BCAH=ABCQ,
即:6×4=5CQ,
解得:CQ=
∵CQ⊥AB,DE⊥AB,CZ⊥DE,
∴∠CQE=∠QEZ=∠Z=90°,
∴四边形QEZC是矩形,
∴CQ=ZE,
∵∠QEZ=∠Z=90°,
∴∠QEZ+∠Z=180°,
∴CZ∥AB,
∴∠B=∠ZCB,
∵DF⊥AC,CZ⊥DE,
∴∠Z=∠DFC=90°,
∵AB=AC,
∴∠B=∠ACB,
∴∠ACB=∠ZCB,
∵CD=CD,∠ACB=∠ZCB,
∴△ZCD≌△FCD,
∴DF=DZ,
∴DE+DF=CQ=
故选D.
【考点精析】本题主要考查了平行线的判定与性质和矩形的性质的相关知识点,需要掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网