题目内容
【题目】如图,一次函数的图象与反比例函数的图象交于第二、四象限内的点和点.过点作轴的垂线,垂足为点,的面积为4.
(1)分别求出和的值;
(2)结合图象直接写出的解集;
(3)在轴上取点,使取得最大值时,求出点的坐标.
【答案】(1),;(2)或; (3)
【解析】
(1)根据题意利用三角形面积公式求得,得到,将A代入反比例函数,求出反比例函数解析式,再把B代入解析式,即可解答
(2)根据函数图象结合解析式即可判断
(3)作点关于轴的对称点,直线与轴交于,得到 ,设直线的关系式为,把将 ,代入得到解析式,即可解答
(1)∵点,
∴,
∵,即,
∴,
∵点在第二象限,
∴ ,
将代入得:,
∴反比例函数的关系式为:,
把代入得:,
∴
因此,;
(2)由图象可以看出的解集为:或;
(3)如图,作点关于轴的对称点,直线与轴交于,
此时最大,
∵
∴
设直线的关系式为,将 ,代入得:
解得:,,
∴直线的关系式为,
当时,即,解得,
∴
练习册系列答案
相关题目