题目内容
【题目】如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD。
(1)图中与∠COE互补的角是___________________; (把符合条件的角都写出来)
(2)如果∠AOC =∠EOF ,求∠AOC的度数。
【答案】(1);(2)30°
【解析】试题分析:(1)根据互补的两个角的和等于180°,结合图形找出与∠COE的和等于180°的角即可;
(2)设∠AOC=x,可以得到∠EOF=5x,根据对顶角相等得到∠BOD=x,然后根据周角定义列式求解即可.
试题解析:(1)∵∠COE+∠EOD=180°,
∴∠EOD与∠COE互补,
又∠EOD=90°+∠BOD,∠BOF=90°+∠BOD,
∴∠BOF=∠EOD,
∴∠BOF与∠COE互补,
∴与∠COE互补的角是:∠EOD,∠BOF;
(2)设∠AOC=x,则∠EOF=5x,
∵∠AOC=∠BOD(对顶角相等),
∴∠EOF+∠BOD=∠EOF+∠AOC=5x+x=360°2×90°,
即6x=180°,
解得∠AOC=x=30°.
【题目】我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):
表一 表二
a | b | c | a | b | c | |
3 | 4 | 5 | 6 | 8 | 10 | |
5 | 12 | 13 | 8 | 15 | 17 | |
7 | 24 | 25 | 10 | 24 | 26 | |
9 | 41 | 12 | 37 |
(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是_____________,
a、b、c之间的数量关系是_________________________;
(2)仔细观察,表二中a为大于4的偶数,此时b、c的数量关系是_____________,
a、b、c之间的数量关系是_________________________;
(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt△ABC中,当,时,斜边c的值.