题目内容
【题目】如图,已知ABCD的顶点A、C分别在直线x=2和x=5上,O是坐标原点,则对角线OB长的最小值为 .
【答案】7
【解析】解:过点B作BD⊥直线x=5,交直线x=5于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x轴交于点F,直线x=5与AB交于点N,如图: ∵四边形OABC是平行四边形,
∴∠OAB=∠BCO,OC∥AB,OA=BC,
∵直线x=2与直线x=5均垂直于x轴,
∴AM∥CN,
∴四边形ANCM是平行四边形,
∴∠MAN=∠NCM,
∴∠OAF=∠BCD,
∵∠OFA=∠BDC=90°,
∴∠FOA=∠DBC,
在△OAF和△BCD中,
,
∴△OAF≌△BCD(ASA).
∴BD=OF=2,
∴OE=5+2=7,
∴OB= .
由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=7.
故答案为:7.
过点B作BD⊥直线x=5,交直线x=5于点D,过点B作BE⊥x轴,交x轴于点E.则由勾股定理可求出OB的长.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.
练习册系列答案
相关题目