题目内容
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.
(1)请直接写出这条抛物线和直线AE、直线AC的解析式;
(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;
(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,
①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;
②在①的条件下,判断CG与AE的数量关系,并直接写出结论.
【答案】(1)y=﹣x2﹣2x+3;y=2x+6,y=x+3;(2)直角三角形,见解析;(3)①相等,(﹣2,3);②AE=2CG
【解析】
(1)设顶点式,将A点坐标代入,再化为一般式,根据常数项等于3即可求出a的值,由此可得抛物线解析式,设直线AE和AC的解析式,再分别将A点、E点代入即可求出直线AE的解析式,将A点、C点代入即可求出直线AC解析式;
(2)分别求出AC2,CE2,AE2,利用勾股定理的逆定理即可判定;
(3)①设出点D、G、H的坐标,表示DG、HK、GH长度,先根据DG=HK列出方程求得x值,再据此求得DG、HK、GH长度,即可得解;②分别求出CG和AE的长度,即可得出它们的数量关系.
解:(1)抛物线的表达式为:y=a(x+1)2+4=ax2+2ax+a+4,
故a+4=3,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2﹣2x+3;
设直线AE的解析式为:,
将点A(﹣3,0)、E(﹣1,4)的坐标代入一次函数表达式得
,
解得:,
故直线AE的表达式为:y=2x+6,
设直线AC的解析式为:,
将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式得
,
解得:,
故直线AC的表达式为:y=x+3;
(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),
则AC2==18,CE2==2,AE2==20,
故AC2+CE2=AE2,则△ACE为直角三角形;
(3)①设点D、G、H的坐标分别为:(x,﹣x2﹣2x+3)、(x,2x+6)、(x,x+3),
DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3;
当DG=HK时,﹣x2﹣4x﹣3=x+3,解得:x=﹣2或﹣3(舍去﹣3),故x=﹣2,
当x=﹣2时,DG=HK=GH=1,
故DG、GH、HK这三条线段相等时,点D的坐标为:(﹣2,3);
②由①的点G的坐标为:(﹣2,2)
CG==;AE==2,
故AE=2CG.
【题目】二次函数(,,为常数,且)中的与的部分对应值如下表:
以下结论:
①二次函数有最小值为;
②当时,随的增大而增大;
③二次函数的图象与轴只有一个交点;
④当时,.
其中正确的结论有( )个
A.B.C.D.
【题目】合肥百大集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机 | 电冰箱 | |
甲连锁店 | 200 | 170 |
乙连锁店 | 160 | 150 |
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,才能使总利润达到最大?