题目内容
【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:
①∠AEB的度数为______;
②线段AD,BE之间的数量关系为______.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
【答案】结论:(1)60;(2)AD=BE;应用:∠AEB=90°;AE=2CM+BE;
【解析】
试题探究:(1)通过证明△CDA≌△CEB,得到∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°- 60°= 60°;
(2)已证△CDA≌△CEB,根据全等三角形的性质可得AD=BE;
应用:通过证明△ACD≌△BCE,得到AD = BE,∠BEC = ∠ADC=135°,所以∠AEB =∠BEC-∠CED =135°- 45°= 90°;根据等腰直角三角形的性质可得DE = 2CM,所以AE = DE+AD=2CM+BE.
试题解析:解:探究:(1)在△CDA≌△CEB中,
AC=BC,∠ACD=∠BCE,CD=CE,
∴△CDA≌△CEB,
∴∠CEB=∠CDA=120°,
又∠CED=60°,
∴∠AEB=120°- 60°= 60°;
(2)∵△CDA≌△CEB,
∴AD=BE;
应用:∠AEB=90°;AE=2CM+BE;
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,
∴AC = BC, CD = CE, ∠ACB =∠DCB =∠DCE-∠DCB, 即∠ACD = ∠BCE,
∴△ACD≌△BCE,
∴AD = BE,∠BEC = ∠ADC=135°.
∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.
在等腰直角三角形DCE中,CM为斜边DE上的高,
∴CM =" DM" = ME,∴DE = 2CM.
∴AE = DE+AD=2CM+BE.