题目内容
【题目】关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
【答案】(1)m≤;(2)m=﹣3.
【解析】
试题分析:(1)因为方程有两个实数根,所以△≥0,据此即可求出m的取值范围;
(2)根据一元二次方程根与系数的关系,将x1+x2=﹣3,x1x2=m﹣1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.
解:(1)∵方程有两个实数根,
∴△≥0,
∴9﹣4×1×(m﹣1)≥0,
解得m≤;
(2)∵x1+x2=﹣3,x1x2=m﹣1,
又∵2(x1+x2)+x1x2+10=0,
∴2×(﹣3)+m﹣1+10=0,
∴m=﹣3.
练习册系列答案
相关题目
【题目】某校为实施国家“营养计划”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
甲种原料 | 乙种原料 | |
维生素C(单位/千克) | 600 | 400 |
原料价格(元/千克) | 9 | 5 |
现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.
(1)至少需要购买甲种原料多少千克?
(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式,并说明购买甲种原料多少千克时,总费用最少?