题目内容
【题目】如图,直线:与轴、轴分别交于、两点,在轴上有一点,动点从点开始以每秒1个单位的速度匀速沿轴向左移动.
(1)点的坐标:________;点的坐标:________;
(2)求的面积与的移动时间之间的函数解析式;
(3)在轴右边,当为何值时,,求出此时点的坐标;
(4)在(3)的条件下,若点是线段上一点,连接,沿折叠,点恰好落在轴上的点处,求点的坐标.
【答案】(1),;(2);(3);(4)
【解析】
(1)在中,分别令y=0和x=0,则可求得A、B的坐标;
(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;
(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标; .
(4)由勾股定理可得:,折叠可知;,可得:,故,,设,则,在中,根据勾股定理可列得方程,即可求出答案.
解:(1)在中, 令y=0可求得x=4, 令x=0可求得y=2,
∴A(4,0),B(0,2)
故答案为:(4,0) ;(0,2)
(2)由题题意可知AM=t,
①当点M在y轴右边时,OM=OA-AM=4-t,
∵N (0,4)
∴ON=4,
∴,
即;
当点在轴左边时,则OM=AM-OA=t-4,
∴,
即.
∴
(3)若,则有,
∴.
(4)由(3)得,,,
∴.
∵沿折叠后与重合,
∴,
∴,
∴此时点在轴的负半轴上,,,
设,则,
在中,,
解得,
∴.
练习册系列答案
相关题目