题目内容
(12分)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.
(1)
(2)
(3)或1或
解:(1)D点的坐标是. (2分)
(2)连结OD,如图(1),由结论(1)知:D在∠COA的平分线上,则∠DOE=∠COD=45°,
又在梯形DOAB中,∠BAO=45°,∴OD=AB=3
由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°
∴∠1=∠2, ∴△ODE∽△AEF (4分)
∴,即:
∴y与x的解析式为:
(6分)
(3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.
①当EF=AF时,如图(2).∠FAE=∠FEA=∠DEF=45°,∴△AEF为等腰直角三角形.
D在A’E上(A’E⊥OA),
B在A’F上(A’F⊥EF)
∴△A’EF与五边形OEFBC重叠的面积为
四边形EFBD的面积.
∵
∴
∴
∴(也可用) (8分)
②当EF=AE时,如图(3),此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
∠DEF=∠EFA=45°, DE∥AB ,又DB∥EA
∴四边形DEAB是平行四边形
∴AE=DB=
∴
(10分)
③当AF=AE时,如图(4),四边形AEA’F为菱形且△A’EF在五边形OEFBC内.
∴此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
由(2)知△ODE∽△AEF,则OD=OE=3
∴AE=AF=OA-OE=
过F作FH⊥AE于H,则
∴
综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或 (12分)
练习册系列答案
相关题目